Predicción de las propiedades estructurales, cohesivas y electrónicas en sistemas tipo perovskitas A2BB’O6 utilizando Machine Learning (ML) y la Teoría Funcional de Densidad (DFT)



Opciones de visualización y descarga

Apreciado usuario, tenga en cuenta que al momento de intentar visualizar o descargar un documento, podrá aplicar una de estas opciones, dependiendo de cada caso:

- Visualizar el archivo y descargarlo.
- Visualizar el archivo sin permitir la descarga.
- Solicitar una copia al autor en el caso que el documento esté restringido.



Date
2021
Authors
Garrido Barrios, Luis del Cristo
Journal Title
Journal ISSN
Volume Title
Publisher
Universidad del Magdalena

Abstract
En el presente proyecto se aplicó machine learning (ML) y DFT para predecir las propiedades estructurales, cohesivas y electrónicas de los sistemas dobles perovskitas del tipo A2BB’O6 En los últimos años el interés por el estudio de las propiedades cohesivas, termodinámicas, electrónicas y magnéticas de nuevos óxidos de tipo Perovskita ha sido muy exhaustivo debido a descubrimientos relacionados con comportamientos desconocidos de la respuesta magnética tales como la espín-metalicidad y la multiferroicidad. Estas propiedades favorecen las perspectivas de aplicabilidad tecnológica en la industria de la espintrónica. En la actualidad, los estudios teóricos de los materiales tipos dobles perovskitas han jugado un rol muy importante en la predicción de las propiedades estructurales, cohesivas, electrónicas, elásticas, magnéticas, ópticas y entre otras. Uno de los grandes responsables de estos avances teóricos ha sido gracias a la Teoría Funcional de Densidad (DFT). Sin embargo, a pesar que hay gran concordancia entre los resultados experimentales y teóricos obtenidos mediante la DFT, lo cual, se ve reflejado en el aumento exponencial de los avances tecnológicos de hoy en día, por otro lado, hay que reconocer que el costo computacional con la DFT es muy elevado cuando los sistemas o los materiales de estudios son muy grandes y más si se pretende crear una base de datos con información relevantes de las diferentes propiedades que puede exhibir los materiales tipos dobles perovskitas..
Description
Keywords
Citation
item.page.fuente