Diseño e implementación de un sistema de alerta temprana para la detección de Somnolencia aplicado en distintos entornos ocupacionales basado en inteligencia artificial y visión por computadora.



Opciones de visualización y descarga

Apreciado usuario, tenga en cuenta que al momento de intentar visualizar o descargar un documento, podrá aplicar una de estas opciones, dependiendo de cada caso:

- Visualizar el archivo y descargarlo.
- Visualizar el archivo sin permitir la descarga.
- Solicitar una copia al autor en el caso que el documento esté restringido.



Date
2022
Authors
Charris Castrillón, Sebastián Manuel
Sabogal Peralta , Samuel Andrés
Journal Title
Journal ISSN
Volume Title
Publisher
Universidad Del Magdalena

Abstract
En este trabajo de investigación se presenta la implementación de un sistema inteligente de visión por computadora para detectar rasgos de somnolencia en una población especifica dentro de un contexto de productividad de una organización pública o privada. Este prototipo cuenta con la ventaja de no ser invasivo al cuerpo y estructuralmente está construido con componentes de fácil implementación, como una placa raspberry, una cámara digital y una alarma audible, pero con un gran poder de procesamiento. Durante el desarrollo del dispositivo, se optó por comparar dos métodos para determinar la existencia de la fatiga ocular, el primer método parte de un dataset llamado “yawn_eye_dataset_new” tomado de la base de datos de imágenes de kaggle, este contine 726 imágenes para la clase ‘Ojo Abierto’ y 726 imágenes para la clase ‘Ojo Cerrado’, del cual se dividió el 70% de datos para entrenamiento y el 30% para validación. Mediante estos datos se construyó un modelo de red neuronal convolucional de la mano de la metodología de transferencia de aprendizaje para clasificar el estado del ojo y obtener un índice de somnolencia, para evaluar el rendimiento del modelo entrenado se optó por elaborar un set de prueba que contiene 18 imágenes para cada clase. El segundo método, utiliza el modelo de malla facial para obtener la posición del ojo y a su vez usa la relación de aspecto del ojo (Eye Aspect Rate) para medir la distancia que hay en la apertura del globo ocular y de este modo generar un valor medible de somnolencia. Finalmente, el primer método arroja una exactitud del 69% en la predicción y un error del 31%, un porcentaje muy alto para la predicción de un modelo. En cambio, el segundo método presenta un 76% de exactitud en medición del EAR y un error considerablemente bajo del 24%, en comparación con el método uno. En conclusión, el método dos demuestra una mejora en el nivel exactitud y en la disminución del porcentaje de error con respecto al primer modelo desarrollado, porque el EAR acompañado del modelo de malla facial 3D es una manera eficiente de estimar la existencia de la fatiga ocular.
Description
Keywords
Somnolencia, Salud ocupacional, Redes neuronales convolucionales, Transferencia de aprendizaje, Visión por computador
Citation
item.page.fuente