Exploration of a ViT-based multimodal approach to Vehicle Accident Detection

dc.contributor.advisor Sánchez Torres, Germán
dc.contributor.advisor Henriquez Miranda, Carlos Nelson
dc.contributor.author Ríos Pérez, Jesús David
dc.contributor.sponsor Grupo de investigación y Desarrollo en Sistemas y Computación (GIDSYC) spa
dc.creator.degree Ingeniero (a) de Sistemas spa
dc.date.accessioned 2024-07-11T13:43:30Z
dc.date.available 2024-07-11T13:43:30Z
dc.date.issued 2024
dc.date.submitted 2024
dc.description.abstract Multimodal Deep Learning (MMDL) has emerged as a potent framework for synthesizing information from diverse data sources, enhancing the capability of models to understand and predict complex phenomena. Particularly, Vision Transformers (ViT) have shown promising results in processing visual data alongside other modalities for comprehensive analysis. This study aims to investigate the integration of MMDL and ViT in the context of traffic accident detection, addressing the critical need for advanced predictive models in this domain. Through a literature review, we assess the current landscape of MMDL applications, and highlight the evolution and challenges of multimodal learning. Building on these insights, we propose a novel MMDL architecture designed to leverage video, audio, and metadata for accurate and timely accident detection. Our methodology combines a structured review of recent MMDL research with a theoretical approach to architecture design, emphasizing the fusion of multimodal data through ViT. The review adheres to established guidelines for systematic reviews, focusing on advancements from 2019 to 2023, while the architecture design is grounded in a thorough analysis of modalities relevant to traffic incidents. The main contributions include a taxonomy of MMDL methods and a ViT-based architecture for enhancing traffic safety systems. Integrating multimodal data through advanced deep learning models can improves the prediction accuracy of traffic accident detection. This research underscores the potential of MMDL and ViT in developing robust, real-time monitoring systems, marking a step forward in the application of artificial intelligence for public safety and smart city initiatives. spa
dc.description.provenance Submitted by Jesús Rios Perez (jesusriosdp@unimagdalena.edu.co) on 2024-05-14T16:46:12Z workflow start=Step: reviewstep - action:claimaction No. of bitstreams: 1 Exploration of a ViT-based multimodal approach.pdf: 1872021 bytes, checksum: 6742e99f1bfa1457ec7e607813b4ddee (MD5) en
dc.description.provenance Step: reviewstep - action:reviewaction Rejected by Programa de Ingeniería de Sistemas Programa de Ingeniería de Sistemas(ingsistemas@unimagdalena.edu.co), reason: Favor agregar la licencia de publicación en formato PDF. Por favor. on 2024-07-02T19:32:46Z (GMT) en
dc.description.provenance Submitted by Jesús Rios Perez (jesusriosdp@unimagdalena.edu.co) on 2024-07-02T20:59:41Z workflow start=Step: reviewstep - action:claimaction No. of bitstreams: 1 Exploration of a ViT-based multimodal approach.pdf: 1872021 bytes, checksum: 6742e99f1bfa1457ec7e607813b4ddee (MD5) en
dc.description.provenance Step: reviewstep - action:reviewaction Rejected by Programa de Ingeniería de Sistemas Programa de Ingeniería de Sistemas(ingsistemas@unimagdalena.edu.co), reason: Favor agregar la licencia de publicación BI_F12_Formato_Licencia_Publicacion_Trabajos_Grado que se encuentra en el siguiente enlace: https://unimagdalena.edu.co/Content/DocumentosSubItems/BI_F12_Formato_Licencia_Publicacion_Trabajos_Grado.docx En formato PDF. on 2024-07-02T21:09:22Z (GMT) en
dc.description.provenance Submitted by Jesús Rios Perez (jesusriosdp@unimagdalena.edu.co) on 2024-07-03T01:16:37Z workflow start=Step: reviewstep - action:claimaction No. of bitstreams: 2 Exploration of a ViT-based multimodal approach.pdf: 1872021 bytes, checksum: 6742e99f1bfa1457ec7e607813b4ddee (MD5) BI_F12_Formato_Licencia_Publicacion_Trabajos_Grado jesus.pdf: 549657 bytes, checksum: 55a0e8f56af35c7d44385ed7d87efd81 (MD5) en
dc.description.provenance Step: reviewstep - action:reviewaction Approved for entry into archive by Programa de Ingeniería de Sistemas Programa de Ingeniería de Sistemas(ingsistemas@unimagdalena.edu.co) on 2024-07-03T14:29:32Z (GMT) en
dc.description.provenance Step: editstep - action:editaction Approved for entry into archive by Cristhian Camilo Suarez Ibañez(csuarezi@unimagdalena.edu.co) on 2024-07-11T13:43:30Z (GMT) en
dc.description.provenance Made available in DSpace on 2024-07-11T13:43:30Z (GMT). No. of bitstreams: 2 Exploration of a ViT-based multimodal approach.pdf: 1872021 bytes, checksum: 6742e99f1bfa1457ec7e607813b4ddee (MD5) BI_F12_Formato_Licencia_Publicacion_Trabajos_Grado jesus.pdf: 549657 bytes, checksum: 55a0e8f56af35c7d44385ed7d87efd81 (MD5) Previous issue date: 2024 en
dc.format text
dc.identifier.uri https://repositorio.unimagdalena.edu.co/handle/123456789/21215
dc.language.iso en spa
dc.publisher Universidad del Magdalena
dc.publisher Universidad del Magdalena spa
dc.publisher.department Facultad de Ingeniería spa
dc.publisher.place Santa Marta spa
dc.publisher.program Ingeniería de Sistemas spa
dc.rights Acceso Abierto
dc.rights info:eu-repo/semantics/openAccess
dc.rights.accessrights info:eu-repo/semantics/openAccess
dc.rights.cc Acceso Abierto spa
dc.rights.creativecommons https://creativecommons.org/licenses/by-nc-sa/4.0/
dc.rights.creativecommons atribucionnocomercialcompartir spa
dc.subject.proposal Multimodal, Machine Learning, Data Fusion, Deep Learning. spa
dc.subject.proposal Multimodalidad, Aprendizaje de máquinas, Fusión de datos, Aprendizaje profundo. spa
dc.title Exploration of a ViT-based multimodal approach to Vehicle Accident Detection spa
dc.title.alternative Exploración de un enfoque multimodal basado en ViT para la Detección de Accidentes Vehiculares
dc.type bachelorThesis spa
dc.type.coar https://vocabularies.coar-repositories.org/resource_types/c_7a1f/
dc.type.driver info:eu-repo/semantics/bachelorThesis
dc.type.local Trabajo de Grado de Pregrado spa
oaire.accessrights http://purl.org/coar/access_right/c_abf2
thesis.degree.level Pregrado spa
Files
Original bundle
Now showing 1 - 2 of 2
No Thumbnail Available
Name:
Exploration of a ViT-based multimodal approach.pdf
Size:
1.79 MB
Format:
Adobe Portable Document Format
Description:
Multimodal Deep Learning (MMDL) has emerged as a potent framework for synthesizing information from diverse data sources, enhancing the capability of models to understand and predict complex phenomena. Particularly, Vision Transformers (ViT) have shown promising results in processing visual data alongside other modalities for comprehensive analysis. This study aims to investigate the integration of MMDL and ViT in the context of traffic accident detection, addressing the critical need for advanced predictive models in this domain. Through a literature review, we assess the current landscape of MMDL applications, and highlight the evolution and challenges of multimodal learning. Building on these insights, we propose a novel MMDL architecture designed to leverage video, audio, and metadata for accurate and timely accident detection. Our methodology combines a structured review of recent MMDL research with a theoretical approach to architecture design, emphasizing the fusion of multimodal data through ViT. The review adheres to established guidelines for systematic reviews, focusing on advancements from 2019 to 2023, while the architecture design is grounded in a thorough analysis of modalities relevant to traffic incidents. The main contributions include a taxonomy of MMDL methods and a ViT-based architecture for enhancing traffic safety systems. Integrating multimodal data through advanced deep learning models can improves the prediction accuracy of traffic accident detection. This research underscores the potential of MMDL and ViT in developing robust, real-time monitoring systems, marking a step forward in the application of artificial intelligence for public safety and smart city initiatives.
No Thumbnail Available
Name:
BI_F12_Formato_Licencia_Publicacion_Trabajos_Grado jesus.pdf
Size:
536.77 KB
Format:
Adobe Portable Document Format
Description:
License bundle
Now showing 1 - 1 of 1
No Thumbnail Available
Name:
license.txt
Size:
2.43 KB
Format:
Item-specific license agreed upon to submission
Description: