Exploration of a ViT-based multimodal approach to Vehicle Accident Detection
Exploration of a ViT-based multimodal approach to Vehicle Accident Detection
dc.contributor.advisor | Sánchez Torres, Germán | |
dc.contributor.advisor | Henriquez Miranda, Carlos Nelson | |
dc.contributor.author | Ríos Pérez, Jesús David | |
dc.contributor.sponsor | Grupo de investigación y Desarrollo en Sistemas y Computación (GIDSYC) | spa |
dc.creator.degree | Ingeniero (a) de Sistemas | spa |
dc.date.accessioned | 2024-07-11T13:43:30Z | |
dc.date.available | 2024-07-11T13:43:30Z | |
dc.date.issued | 2024 | |
dc.date.submitted | 2024 | |
dc.description.abstract | Multimodal Deep Learning (MMDL) has emerged as a potent framework for synthesizing information from diverse data sources, enhancing the capability of models to understand and predict complex phenomena. Particularly, Vision Transformers (ViT) have shown promising results in processing visual data alongside other modalities for comprehensive analysis. This study aims to investigate the integration of MMDL and ViT in the context of traffic accident detection, addressing the critical need for advanced predictive models in this domain. Through a literature review, we assess the current landscape of MMDL applications, and highlight the evolution and challenges of multimodal learning. Building on these insights, we propose a novel MMDL architecture designed to leverage video, audio, and metadata for accurate and timely accident detection. Our methodology combines a structured review of recent MMDL research with a theoretical approach to architecture design, emphasizing the fusion of multimodal data through ViT. The review adheres to established guidelines for systematic reviews, focusing on advancements from 2019 to 2023, while the architecture design is grounded in a thorough analysis of modalities relevant to traffic incidents. The main contributions include a taxonomy of MMDL methods and a ViT-based architecture for enhancing traffic safety systems. Integrating multimodal data through advanced deep learning models can improves the prediction accuracy of traffic accident detection. This research underscores the potential of MMDL and ViT in developing robust, real-time monitoring systems, marking a step forward in the application of artificial intelligence for public safety and smart city initiatives. | spa |
dc.description.provenance | Submitted by Jesús Rios Perez (jesusriosdp@unimagdalena.edu.co) on 2024-05-14T16:46:12Z workflow start=Step: reviewstep - action:claimaction No. of bitstreams: 1 Exploration of a ViT-based multimodal approach.pdf: 1872021 bytes, checksum: 6742e99f1bfa1457ec7e607813b4ddee (MD5) | en |
dc.description.provenance | Step: reviewstep - action:reviewaction Rejected by Programa de Ingeniería de Sistemas Programa de Ingeniería de Sistemas(ingsistemas@unimagdalena.edu.co), reason: Favor agregar la licencia de publicación en formato PDF. Por favor. on 2024-07-02T19:32:46Z (GMT) | en |
dc.description.provenance | Submitted by Jesús Rios Perez (jesusriosdp@unimagdalena.edu.co) on 2024-07-02T20:59:41Z workflow start=Step: reviewstep - action:claimaction No. of bitstreams: 1 Exploration of a ViT-based multimodal approach.pdf: 1872021 bytes, checksum: 6742e99f1bfa1457ec7e607813b4ddee (MD5) | en |
dc.description.provenance | Step: reviewstep - action:reviewaction Rejected by Programa de Ingeniería de Sistemas Programa de Ingeniería de Sistemas(ingsistemas@unimagdalena.edu.co), reason: Favor agregar la licencia de publicación BI_F12_Formato_Licencia_Publicacion_Trabajos_Grado que se encuentra en el siguiente enlace: https://unimagdalena.edu.co/Content/DocumentosSubItems/BI_F12_Formato_Licencia_Publicacion_Trabajos_Grado.docx En formato PDF. on 2024-07-02T21:09:22Z (GMT) | en |
dc.description.provenance | Submitted by Jesús Rios Perez (jesusriosdp@unimagdalena.edu.co) on 2024-07-03T01:16:37Z workflow start=Step: reviewstep - action:claimaction No. of bitstreams: 2 Exploration of a ViT-based multimodal approach.pdf: 1872021 bytes, checksum: 6742e99f1bfa1457ec7e607813b4ddee (MD5) BI_F12_Formato_Licencia_Publicacion_Trabajos_Grado jesus.pdf: 549657 bytes, checksum: 55a0e8f56af35c7d44385ed7d87efd81 (MD5) | en |
dc.description.provenance | Step: reviewstep - action:reviewaction Approved for entry into archive by Programa de Ingeniería de Sistemas Programa de Ingeniería de Sistemas(ingsistemas@unimagdalena.edu.co) on 2024-07-03T14:29:32Z (GMT) | en |
dc.description.provenance | Step: editstep - action:editaction Approved for entry into archive by Cristhian Camilo Suarez Ibañez(csuarezi@unimagdalena.edu.co) on 2024-07-11T13:43:30Z (GMT) | en |
dc.description.provenance | Made available in DSpace on 2024-07-11T13:43:30Z (GMT). No. of bitstreams: 2 Exploration of a ViT-based multimodal approach.pdf: 1872021 bytes, checksum: 6742e99f1bfa1457ec7e607813b4ddee (MD5) BI_F12_Formato_Licencia_Publicacion_Trabajos_Grado jesus.pdf: 549657 bytes, checksum: 55a0e8f56af35c7d44385ed7d87efd81 (MD5) Previous issue date: 2024 | en |
dc.format | text | |
dc.identifier.uri | https://repositorio.unimagdalena.edu.co/handle/123456789/21215 | |
dc.language.iso | en | spa |
dc.publisher | Universidad del Magdalena | |
dc.publisher | Universidad del Magdalena | spa |
dc.publisher.department | Facultad de Ingeniería | spa |
dc.publisher.place | Santa Marta | spa |
dc.publisher.program | Ingeniería de Sistemas | spa |
dc.rights | Acceso Abierto | |
dc.rights | info:eu-repo/semantics/openAccess | |
dc.rights.accessrights | info:eu-repo/semantics/openAccess | |
dc.rights.cc | Acceso Abierto | spa |
dc.rights.creativecommons | https://creativecommons.org/licenses/by-nc-sa/4.0/ | |
dc.rights.creativecommons | atribucionnocomercialcompartir | spa |
dc.subject.proposal | Multimodal, Machine Learning, Data Fusion, Deep Learning. | spa |
dc.subject.proposal | Multimodalidad, Aprendizaje de máquinas, Fusión de datos, Aprendizaje profundo. | spa |
dc.title | Exploration of a ViT-based multimodal approach to Vehicle Accident Detection | spa |
dc.title.alternative | Exploración de un enfoque multimodal basado en ViT para la Detección de Accidentes Vehiculares | |
dc.type | bachelorThesis | spa |
dc.type.coar | https://vocabularies.coar-repositories.org/resource_types/c_7a1f/ | |
dc.type.driver | info:eu-repo/semantics/bachelorThesis | |
dc.type.local | Trabajo de Grado de Pregrado | spa |
oaire.accessrights | http://purl.org/coar/access_right/c_abf2 | |
thesis.degree.level | Pregrado | spa |
Files
Original bundle
1 - 2 of 2
No Thumbnail Available
- Name:
- Exploration of a ViT-based multimodal approach.pdf
- Size:
- 1.79 MB
- Format:
- Adobe Portable Document Format
- Description:
- Multimodal Deep Learning (MMDL) has emerged as a potent framework for synthesizing information from diverse data sources, enhancing the capability of models to understand and predict complex phenomena. Particularly, Vision Transformers (ViT) have shown promising results in processing visual data alongside other modalities for comprehensive analysis. This study aims to investigate the integration of MMDL and ViT in the context of traffic accident detection, addressing the critical need for advanced predictive models in this domain. Through a literature review, we assess the current landscape of MMDL applications, and highlight the evolution and challenges of multimodal learning. Building on these insights, we propose a novel MMDL architecture designed to leverage video, audio, and metadata for accurate and timely accident detection. Our methodology combines a structured review of recent MMDL research with a theoretical approach to architecture design, emphasizing the fusion of multimodal data through ViT. The review adheres to established guidelines for systematic reviews, focusing on advancements from 2019 to 2023, while the architecture design is grounded in a thorough analysis of modalities relevant to traffic incidents. The main contributions include a taxonomy of MMDL methods and a ViT-based architecture for enhancing traffic safety systems. Integrating multimodal data through advanced deep learning models can improves the prediction accuracy of traffic accident detection. This research underscores the potential of MMDL and ViT in developing robust, real-time monitoring systems, marking a step forward in the application of artificial intelligence for public safety and smart city initiatives.
No Thumbnail Available
- Name:
- BI_F12_Formato_Licencia_Publicacion_Trabajos_Grado jesus.pdf
- Size:
- 536.77 KB
- Format:
- Adobe Portable Document Format
- Description:
License bundle
1 - 1 of 1
No Thumbnail Available
- Name:
- license.txt
- Size:
- 2.43 KB
- Format:
- Item-specific license agreed upon to submission
- Description: